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SUMMARY 
I n  the first part of the paper the dimensional laws governing 

the processes of heat and momentum transport from an infinite 
rough plane are assembled and their consequences set out. In  
the second part, the detailed equations for the turbulent energy, 
the mean square temperature fluctuation and the covariance of 
temperature and vertical velocity are used, together with some 
speculative assumptions concerning the dissipative action of the 
turbulence, to derive a series of relations between the turbulent 
intensities and the Austausch coefficients. One of these relations 
indicates that the flux form of the Richardson number cannot 
exceed a critical value which is about 0.15. It follows that in 
highly stable conditions the buoyancy forces have little direct 
effect on the turbulent energy balance, their action being primarily 
to cause a reduction in the scale of the motion and some change 
in its structure. 

1. INTRODUCTION 
The theory of turbulent flow near a heated or cooled horizontal rough 

surface is notoriously difficult, but in the past few years some progress has 
been made. This has largely been a result of an increased understanding 
of the role of the various physical quantities in the problem and the more 
precise formulation of a theoretical model, which have enabled certain 
relationships to  be put forward on dimensional grounds. These restrict 
the possible forms of certain functions (e.g. the velocity profiles) and show 
that some of the empirical formulae hitherto used to  describe them 
(e.g. Deacon’s (1949) law) cannot be correct. It is the aim of the first 
part of this paper ($2 to 0 5) to collect together these dimensional arguments 
and display the correct form of the physical laws. Nearly all of the steps 
in this demonstration have been described by earlier writers or are implicit 
in their work: but individual papers have presented only fragments of 
the argument and these have frequently been associated with assumptions 
which are very unlikely to be correct (e.g. that the Austausch coefficients 
for heat and momentum are equal). Thus, since it is only after the 
dimensional arguments have been completed that it is profitable to examine 
the mechanism of the flow in detail, the author hopes that any readers who 
are familiar with these arguments will excuse their repetition. 
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T h e  character of the second part of the paper ($6) is different. I n  it 
an attempt is made to learn more about the physical processes controlling 
the transfer of heat and momentum from the equations of motion. I n  
order to do this, the detailed equations for the turbulent energy, the mean 
square density fluctuation and the covariance between density and vertical 
velocity are written down. These alone are not sufficient to solve the 
problem, and to make further progress it is found necessary to resort to 
some speculation and guess-work ; thus the results that are obtained, although 
based on assumptions which the author finds plausible, cannot be regarded 
as having any established validity. These assumptions concern the dissi- 
pative action of the turbulence on the turbulent energy, the density 
fluctuations and the covariance of the density and vertical velocity. It is 
suggested that the rates at which the turbulence would begin to destroy 
these quantities, if the simple processes continually creating them were to 
cease to operate, vary with the stability in such a way that their ratios remain 
constant. It is shown on the basis of this assertion that the ratio of the 
Austausch coefficient for heat to that for momentum approaches zero when 
the flux form of the Richardson number approaches a critical value which 
is considerably less than unity. It follows that in very stable conditions 
it is not through the energy balance that the buoyancy forces exercise their 
great influence on the properties of the turbulence. The  intensity of the 
density fluctuations is shown to be an important quantity, and that further 
investigation of the way in which it is controlled is desirable. 

2. 'THE THEORETICAL MODEL 

T h e  boundary layers of meteorology commonly differ from those of 
aerodynamics in that their thickness is great and the region that is of primary 
interest and accesible for measurement is relatively small and close to the 
surface. T h e  actual thickness and possible growth of these layers is often 
assumed to be of little importance, and it is customary to treat them 
theoretically as if the properties near the surface were independent of the 
state of the flow at great heights. Moreover, the turbulent shear-stress 
and heat flux are considered to be independent of height. This corresponds 
closely to the actual conditions near the ground so far as the shear-stress is 
concerned, but unfortunately the complex effects of radiation do in practice 
lead to some change with height in the turbulent heat flux. These are of 
dominant importance in stable conditions when the turbulent Austausch 
coefficient is very small, and possibly also very near the surface. In  addition, 
it is seldom that the ground or sea is sufficiently uniform horizontally for 
advection to be negligible and a steady and homogeneous state to be 
established. For the present, theory must ignore these complications and 
consider a steady state in which the turbulent fluxes are both independent 
of height. 

We consider an infinite 
uniform rough plane ( z  = 0) which supports a fluid of great depth. 

It is now possible to specify a theoretical model. 
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A stress p u i  is applied to the plane tangentially causing it to move in the 
negative x-direction, and heat is supplied to (or extracted from) the plane 
at a constant rate. We take our frame of reference to be fixed relative to 
the plane and confine our attention to the steady state which the flow in the 
vicinity of the plane is supposed to attain ultimately. In this model the 
mean velocity of the fluid (relative to the plane) increases indefinitely with 
height in an unknown way; and because of this, the indirect and rather 
unnatural specification of the flow is needed. The unproved assumption 
that the flow near the surface attains a steady state is important as it implies 
that the flow there is not influenced by that at great heights. If it is false 
and the flow near the surface does depend on the thickness of the boundary 
layer, the great complexity of the meteorological problem would indicate 
little prospect of deriving any theory at present. 

We shall consider the fluid to be incompressible, but the known 
equivalence (subject to certain restrictions) between the motion of an 
incompressible fluid and that of a gas, enables the results to be applied to 
the atmosphere as required. Moreover, we shall assume that the fractional 
changes in density are so small that their effect on the inertia of the fluid can 
be neglected, so that they need only be taken into account in the gravitational 
terms. In other words, the fluid is treated as having uniform density but 
zariuble weight, as is commonly done in problems of this type. 

3. THE ROLE OF xo 
In  conditions of neutral stability* (that is, when there is no heat flux) 

it is known that the mean velocity U at height x is given by the equation 

where k is a constant with an observed value of about 0.4. The integral 
of (1) is 

where xu is a length characterizing the roughness of the surface ; zu enters (2) 
only through the boundary condition determining the constant of integration 
of (l), and so a change in xo merely adds a constant velocity to the flow. 
It would seem reasonable to suppose that such a change would not affect 
the turbulence in any way (except at heights of the order of zo). Even 
in stable and unstable conditions, (1) still holds near the surface and we 
are able to state quite generally that the only efJect of a change in the value 
of xo is to superpose a uniform translation on the whole $ow without modifying 
its internal mechanism. 

* The word ‘ stability ’ is used in this paper to indicate the static stability of an 
inviscid fluid with the same vertical distribution of potential density as that in the 
flow considered; it does not refer to the growth of small disturbances in the moving 
fluid. 



Turbulent transport of heat and momentum 459 

This statement is so obvious and elementary that at first sight it seems 
strange that it has received little attention from meteorologists. The 
explanation of this probably lies in uncertainty concerning the assertion that 
the flow near the surface is independent of that at great heights. When the 
theory of the whole depth of the boundary layer (Ekman spiral) is considered, 
even in its simplest form (see Ellison 1956), it is found that xo is involved in 
determining its thickness. Thus, unless the assertion is correct, xu is 
likely to affect the whole structure of the flow. 

4. DIMENSIONAL ARGUMENTS 

The statement of the last section has some immediate and far-reaching 
consequences. I t  implies _-  that the only variables determining the internal 
structure of the flow are gp‘w/p (where p’ is the density fluctuation and j 
the mean density), v (the molecular kinematic viscosity), K (the thermometric 
conductivity), u8 and x. At the very high Reynolds numbers of the atmo- 
sphere the molecular quantities may be omitted where they occur separately, 
but it is debatable whether or not the Prandtl number V / K  ought to be 
considered in relation to  heat transfer (Batchelor & Townsend 1056). 
I t  is omitted here, but since it is a dimensionless constant the omission has 
little importanceat thisstage. Hence, in neutral conditions all dimensionlcss 
groups such as u2 /u i ,  zi2/u& G / u : ,  (a/u+)dU/dx, ~~((ap/ (ax)~/u: ,  etc., (where 
u, v and w are the components of the velocity fluctuation andp is the pressure 
fluctuation) must be constant and independent of height. Covariances 
such as u(xl, yl, z1)u(x2, y z ,  x Z )  must be functions of only (xl - xz ) /x l ,  

When there is a heat flux, an additional length L = ii~g/gp% is available 
and all the dimensionless groups will depend on the dimensionless height 
variable, Z = x / L  (Obukhov 1946; Charnock 1956). Thus, using the 
hypothesis that even in non-neutral conditions the effect of a change in xu 
is merely to superpose a uniform translation on the whole flow, we have 

(Y1 -Y2)lx1, and (z1- X2)/Zlf.  

=p(logjZl, sgnZ). 
1 dU 

u, (3) 

For small values of Z the buoyancy forces are negligible and f’ must approach 
the constant value 1/k which it takes in neutral conditions. Thus, the 
integral of (3) is 

kU 
- +loglS,,J = kf(logjZj, sgnZ), 
@+ 

where STb is Businger’s (1955) stability index defined by 

s, = xo/L = zzo/z, 

*These variables can, of course, be combined in various 
The choice of the most convenient form ( X , - X ~ ) / ( Z ~ + Z ~ ) ,  etc. 

delicacy. 

(4) 

(5) 

ways, e.g. to give 
is a matter of some 
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andf(loglZ1, sgn 2) tends to  log/ZJ for small 2. I t  will be seen from (4) 
that the velocity profile can take only two forms, one for stable and one for 
unstable condition; the logarithmic law is the limit of these for small 
heights. 

T h e  determination of the function f(logjZ1, sgn 2) in (4) is, of course, 
a major task for theory, but not one that can yet be accomplished. However 
physical reasoning can take us a little farther. I n  1920 Richardson showed 
that the quantity which is now known as the flux form of the Richardson 
number (Deacon 1955) (and denoted here by Rf) is equal to the ratio of the 
rate at which buoyancy forces extract energy from the turbulence to the rate 
at which it is supplied by the shear-stress. This result is a direct 
consequence of the energy equation for the turbulence, (13). Rf may be 
expressed in the following equivalent ways : 

where 

Richardson's arguments make it clear that Rf cannot exceed unity over any 
substantial depth of fluid, so it must have a maximum value (critical value) not 
greater than this. It will be suggested shortly that Rfcrit is in fact 
considerably less than one, but  some deductions can be made from its mere 
existence. Rf and KS are functions of Z, and physical intuition urges that 
they are monotonic functions. I n  that case, Rf must approach its critical 
value when Z becomes large and positive. We have in the limit : 

- -  
Rfcrit = RiK,/KM = gp'wK,/pu:. (7) 

Hence in  very stable conditions K M  is independent of height and determined 
by the heat and momentum fluxes. Linear velocity profiles such as are 
predicted by (7) have been observed in the atmosphere (e.g. by Rider & 
Robinson 1951), but the agreement is probably fortuitous since it is likely 
that in the conditions of the measurements the temperature profiles were 
controlled by radiation and that the turbulent heat flux was not independent 
of height. 

If Ri, as well as Rf, has a maximum value, (7) determines K, in terms of 
it ; but there is no reason to think that this is the case. It seems more likely 
(especially in view of (20)) that turbulence can be maintained at large values 
of Ri. Proudman (1953), following earlier work of Sir Geoffrey Taylor, 
has analysed measurements of currents and salinity in the Kattegat and 
found appreciable transport of momentum by turbulence associated with 
values of Ri up to 10. As Ri increases, the ratio KH/KM must decrease 
in proportion ; so, in our model, KII decreases indefinitely with height and 
is not determined uniquely by the fluxes alone in the same way as K,. 
I n  order to find K,, and hence the density profile, it is necessary to know 
how the limit is approached. That  is, one must know how K,,/K,, 
approaches zero as Rf approaches Rfcrit, and how Rf varies with 2. 
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At the other extreme, in very unstable conditions (large negative Z),  
a state of free convection may be assumed to exist, so that KH is independent 
of u+. It follows that the quantity H+ defined by, -- 

is constant. 
suggest that it has a value of about 0.8. 
which brings out the dependence of Kz on Z in these conditions, is 

Any sort of mixing length theory would seem to suggest that KM is also 
independent of u* in free convection, and this is generally assumed to be the 
case. It follows that KH/KM must approach a constant value for large 
negative 2. 

Our knowledge of KG as a function of Rf can now be summarized as 
follows. When Rf = 0, KS = k (see (1)); when Rf approaches Rferit at 
large positive 2, KZ vanishes (see ( 7 ) )  ; when Rf is large and negative, KG 
is proportional to Rf"* (see (9) and (6)). Hence the well known and useful 
semi-empirical formula of Holzman (1943), 

where s is a constant, cannot be correct except for very small values of Ri. 
However, it is very convenient to have a semi-empirical formula like this, 
and so the following may be suggested : 

Note that the right hand side of(l1) contains Rf in place of Ri. 
written as a relation between K$ and 2, since by (6) we have 

Measurements made by workers in Australia (Taylor 1956) 
An alternative expression for H X ,  

(9) H*2 = -K*32-1. 
H 

(K$/k)2 = 1 -sRi, (10) 

(K$/k)* = 1 -Rf/Rfcrit. (11) 
It can be 

(K;/k)* = 1 -ZKG/Rfcrit. 

(11) has no theoretical basis beyond having the correct form in limiting 
conditions and presumably a more elaborate formula with more empirical 
constants will be needed as soon as precise observations become available. 

I n  the case of free convection (11) implies 

KH/KM = Rf:i: H*2/3k-4/3. (12) 
When one inserts the numerical values already mentioned for K* and k 
2nd the value 0.15 for Rfcrit as is suggested below, this gives IC,/KM = 1.6, 
which seems quite reasonable. 

5. THE (LOG + LINEAR)-LAW 

K&/k = 1+a,Z+a,Z2+ ..., 
Presumably KS can be expanded in a power series in 2:  

so kU/u* = log(z/zo)-a,Z+ ... . (13) 
Businger (1955) has shown from an analysis of Rider's (1954) velocity 
profiles that a, is about 0.8, while Monin (undated) gives al = 0.6. 
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The  semi-empirical equation (1 1) yields a, = k/4Rfcrit, which implies 
that Rfcrit = 0-14 if a, = 0-7. This value has no more authority that (11) 
itself, but it does strongly indicate that Rfcrit is small. It also turns out 
that this value is virtually identical with that suggested by a quite separate 
argument in the next section. 

6. THE TRANSPORT MECHANISM 

I n  this section an attempt is made to approach the subject from a new 
angle and to derive useful information from the equations of motions 
together with some relatively weak and general assumptions. The  
suggestion already made that Rf has a small critical value is confirmed, 
and it is shown that the assumptions lead to a reasonably consistent physical 
picture of the processes governing the flow. It is not claimed that the 
validity of the assumptions is established ; but, whether they are correct 
or not, the theory does indicate subjects which are likely to  repay further 
investigation. 

From the Navier-Stokes equations, the equation of continuity and the 
equation of heat conduction, it is elementary to deduce the following 
equations for the mean square density fluctuation, the turbulent energy 
and the density flux : 

iap i a F p  -d i i  - 
Z a t  2 ax + -- + Wp' dx - - Kp'v'p' = 0, (14) 

- 
l a$  wpig - - - 
P ax P 

+ =- + T - v(uV% + vV27/ + w V ~ W )  = 0, (15) 

a$ aw2pl - d p  1 3  p3g - - 
- + - +w'- + -p  - + - K w V ~ P ' - V ~ ' V ~ W  = 0. (16) at ax dz: ax 

I n  our model conditions are steady and so the first terms in these equations 
vanish; they have b e e n z i t t e n  down merely to aid understanding. The  
' _ -  diffusion' terms like a(wpr2)/ax, etc., are probably always negligible since 
p'2, u2, etc., vary only slowly, if at all, with height. The  ' pressure-flow 'term 
a(pw)/az in (15) is zero in neutral conditions, and there seems no reason to 
think that i t  ever becomes significant. There remain the dissipation terms, 
the term p'appz in (16), and the simple terms of obvious interpretation among 
which we wish to discover new relations. 

Now it is well known that a t  high Reynolds numbers the rates of 
dissipation are very largely determined by typical length and velocity 
scales of the turbulence and not by molecular quantities such as viscosity. 
- I,et us  - -  therefore -- formally introduce decay times T,, T,, and T,, for p12, 

~2 + 212 + w2, and wp', such that, in the (imagined) absence of the producing 
terms, the mixing action of the turbulence would begin to destroy these 

- 
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I n  other words, let us define T,, T2 quantities at rates equal to l /Tl ,  etc. 
and T ,  by the following equations : 

- 
- dF 

Pf2 + wp'- = 0, 2 f  d z  

(19) 

Since the mixing action of - the turbulence - tends to destroy the correlation 
between w and p', as well as w2 and pla, T ,  may be expected to be substantially 
smaller than T ,  and T,, which may well be roughly equal. While T,, T ,  and 
T ,  certainly vary with stability, we may reasonably guess that they are all 
dominantly determined by the same typical length and velocity scales and 
that the relation between the processes responsible for the destruction of 
the turbulent energy, the density fluctuations, and the density flux, change 
only little with stability. If so, T,, T2 and T3 must remain in roughly 
fixed ratios. Such an assertion is admittedly speculative, but seems to 
lead to a consistent physical theory. 

This is 
plausible if the term is considered to represent the drag on a rising blob of 
hot fluid in unstable conditions ; in stable conditions the term turns out to 
be negligible and so the interpretation is unimportant. 

It may be noted at once that (17) alone implies that K, is always positive 
and that no selective action of the buoyancy forces, such as was once suggested 
by Priestley & Swinbank (1947), can cause a transfer of density against 
the gradient in stable conditions. 

After a little algebra,the equations (17) to (19) can be rearranged to give 
KHIKM, T2 (say), and p', in terms of the known fluxes, the ratios of TI,  T2 
and T,, and the components of the turbulent energy. Let us first examine 
the equation for K,/KM : 

I n  (19), the term p'apjaz has been incorporated in S I T 3 .  

which is the basic result of this part of the paper. There can be little doubt 
that for small positive values of R f g e  term b s q u a r e  brackets is the dominant 
one. If we take T,/T, = 1 and ( u 2 + ~ + z u Z ) / ~  to have the same value as 
in neutral conditions, which is known to be roughly 5-5, we see that KH/KM 
falls to zero when Rf = 0.15. This small critical value of Rf is most 
remarkable since it implies that in stable conditions the buoyancy forces 
do not have any great effect on the energy balance. tkesecjrcumstances 
it is difficult to believe that the assumption that (u2+v2+w2)/w2 has the 
same value as in neutral conditions is far wrong ; but, in any case, one would 
expect that in stable conditions horizontal motions would be favoured 
at the expense of vertical ones, thereby causing the quantity to increase 
rather than decrease. Such a change would lead to an even smaller value 
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of Rfcrit. It is, of course, conceivable that TJT, decreases in stable condi- 
tions, but there is no obvious reason why this should be expected, and it 
would require a very drastic change to affect the general conclusion that the 
critical value of Rf is small. 

The author knows of no measurements which are nearly precise enough 
to enable the conclusion to be checked. The work of Proudman (1953), 
which was referred to earlier, indicates a value around 0.25; but the 
conditions of the measurements were very different from the ideal considered 
in the theory and the discrepancy is not disturbing. 

Even in neutral conditions it is known only that K E / K M  is roughly 
unity. The work of Rider (1954) suggests a value about 1.3, while that of 
Swinbank (1955) suggests about 0.7. Cramer & Record (1953) found that 
KM was often less than K,, in agreement with Rider, but their results were 
definitely affected by the trajectory of the air & which the measure- 
ments_ - w z e  m a d e .  If we take T, /T3 = 6, w2/u: = 1.6, and again 
(u2+v2+w2)/w2 = 5 . 5 ,  in neutral conditions (Rf = 0), (20) gives 
K, /KM = 1.2. That it should be necessary to take quite such a high value 
of T, /T3  is perhaps a little surprising, but quite unavoidable. I t  seems 
likely that with these values for the constants, (20) will give a good representa- 
tion of K,/K, while Rf is small. 

With increasing instability the ratios of the intensities will begin to 
change. At the extreme, in free convection, the scale of the motion is 
limited to be proportional to the height ; but the turbulent energy is produced 
entirely by the buoyancy forces, and so, being independent of the shear-stress, 
must on dimensional grounds increase as Z2l3. The equation for K R /  KM 
now degenerates into one for KH alone, namely, 

so 

which connects the turbulent encrgy-with_theheat flux in free convection. 
We do not know the value of (u2+v2+w2)/w2 and the ratio of the - -  T’s in 
these conditions. If (22) is considered as an equation for $+v2+w2 ,  
it is not very sensitive to the former and we may take a value of 3 as heing 
reasonable ; in the absence of any evidence that the ratios of the T’s differ 
from their values in neutral conditions, we can only make a provisional 
guess that they are the same. If so, we obtain - - -  -- 

+ 218 + w2 = 3(xgp’w/p)2’3. (23 ) 
Now let us turn to the second of the equations derived from (17) to (19), 

that for T,, which is just a restatement of (18). T,  has little direct interest 
since it is not measurable, but on account of our assertion that it is determined 
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by typical length and velocity scales of the turbulenceLit can to a limited 
extent help us to form a physical picture. (U+V?+W~)~/~  is the obvious 
choice for the velocity scale, and so the e q u a h n  for T,  can be used to deter- 
mine a length L M  defined as T , ( ~ + ~ + W ~ ) ~ / ~ .  From (18) and (6) we 
obtain - - -  

L, = ( u ~ + v ~ + w ~ ) ~ / ~ u ; ~ L R ~ / ( ~  - R f ) ,  (24) 
This implies that L M  is proportional to x in neutral and unstable conditions 
and to L in very stable conditions, as was perhaps to be expected. The 
approximate numerical values are as follows: when Rf = 0, LM = lox; 
in free convection, L, = 52; in very stable conditions, L M  = 5L. I t  is 
of course only the relative sizes of L M  in the three states that is significant. 
It is a little surprising that its value in free convection is only half that in 
neutral conditions. This result may be partly spurious and due to an 
incorrect numerical constant in (23), but it is hardly possible that that is 
the whole cause of the difference. It is more likely that the effect is in some 
way connected with the fact that in free convection the turbulent energy 
is more nearly isotropically distributed than in neutral conditions. - 

The remaining equation to be discussed is that for p‘,, 

1 - Rf [1+ T l ( 2  + 3 + $) /T2z2]  
(25) 

($), -- - -  
2( TI/ T N -  R f )  p’2w2 

If we keep the same numerical values as previously, this predicts that the 
correlation coefficient, ~ p ‘ / ( p ’ ~ ) > ’ / ~ ( ( e O ” ) l / ~ ,  is about 0.6 in free convection ; 
0.3 in (almost) neutral conditions; and vanishes in very stable conditions. 
In principle these predictions can be tested easily, but again adequate 
measurements are lacking. The values given by Swinbank (1955)  are 
very scattered, but indicate a value of 0.4 rather than 0-3 in nearly neutral 
conditions. The measurements do not show the form of the variation 
with stability beyond the sign of the general trend. 

The simple physical explanation of the relative inefficiency of heat 
transfer in stable conditions expressed by (20) and (25 )  is that then a 
displaced fluid particle tends to return to its equilibrium level before it 
has had time to mix with its surroundings. A particle can transfer 
momentum during a brief excursion without mixing with its surroundings 
through the agency of pressure fluctuations, but in order to transfer heat it 
must mix. 

Some idea of the vertical distance travelled by particles before either 
returning towardstheir equilibrium level or mixing can be obtained from 
the length L, = ( ~ ’ ~ ) l ’ ~ / d p / d z .  It can easily be shown that 

which shows that in stable conditions LH becomes much smaller than LM. 
No precise interpretation of this can be given since the two scales have a 
different nature, but it presumably means that in stable conditions scales 
measured in the vertical direction are liable to be much smaller than those 
measured horizontally. 

P.M. a 1  
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One last point is worth mentioning. In  very stable conditions the last 
Thus two terms of (19) become much greater than the first, and balance. - 

P' % 
PdF/dZ 

- 
w2 = - 

In other words, the scale L, is just such that tke work required to lift 
a particle a distance L, from its equilibrium level is equal to its average 
kinetic energy. 

7. TRANSPORT OF INERT POLLUTANT 

If the theory of the previous section is applied in a similar way to the 
transport of an inert pollutant (i.e. one that does not affect the density 
of the fluid), it is found that the Austausch coefficient for it is necessarily 
equal to K,. The reason for this is that no mechanism is included in the 
theory which would enable the turbulence to destroy the correlation between 
density fluctuation and pollutant concentration. Thus the conclusion 
is one which may be seriously upset as the role of molecular processes in 
turbulent flow becomes better understood. Observational evidence based 
on direct measurements of the Austausch coefficients is at present conflicting ; 
and it is likely that measurements of the correlation between density 
fluctuation and pollutant concentration would provide a simpler and more 
sensitive test. 
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